Kalinga University Science Master Of Science (Chemistry)

PO

S. No.	Program Outcome (PO) Description
1	Introduce the basic concepts, fundamental principles, and the theories related to various scientific phenomena and their relevancies in the day-to-day life.
2	Realize how developments in the interdisciplinary fields help in the development of other science subjects and vice-versa and provides better solutions for the sustainable development.
3	Acquire the skills in handling scientific instruments, planning and performing experiments and drawing logical inferences from the scientific experiments.
4	Develop flair by participating in various social and cultural scientific activities voluntarily, in order to spread knowledge, creating awareness about the recent innovations in science and technology etc.
RAIPU	Develop various communication skills such as reading, listening, speaking, etc., which we will help in expressing scientific ideas and views clearly and effectively.
6	Realize that pursuit of knowledge is a lifelong activity and in combination with untiring efforts and positive attitude and other necessary qualities leads towards a successful life.
7	Acquire a foundation of chemistry of sufficient breadth and depth to enable them to understand and critically interpret the primary chemical literature.
8	Develop the ability to communicate scientific information and research results in written and oral formats.

9	Prepare students for pursuing research or careers in industry in concerned subject and allied fields. Capability to use appropriate software to solve various problems and to apply programming concepts of C++ and Mathematica/ Matlab to various scientific investigations, problem solving and interpretation
10	Ability to think, acquire knowledge and skills through logical reasoning and to inculcate the habit of self-learning throughout life, through self- paced and self- directed learning aimed at personal development, and adapting to changing academic demands of work place through knowledge/ skill development/ reskilling.
11	Learn the laboratory skills needed to design safely and interpret chemical research.
12	Understand the interdisciplinary nature of chemistry and to integrate knowledge of mathematics, physics, biology and other disciplines to a wide variety of chemical problems.

KALINGA

PSO

S. No.	Program Specific Outcome (PSO) Description
1	Provide a broad foundation in chemistry that stresses scientific reasoning and analytical problem solving with a molecular perspective.
RAIPU 2	Achieve the skills required to succeed in the chemical industry and professional school. Get exposures of a breadth of experimental techniques using modern instrumentation.
3	Understand the importance of the Periodic Table of the Elements, how it came to be, and its role in organizing chemical information.
4	Understand the interdisciplinary nature of chemistry and to integrate knowledge of mathematics, physics, biology and other disciplines to a wide variety of chemical problems.
5	Learn the laboratory skills needed to design safely and interpret chemical research.

CO

S.No.	Course Code	Course Name	Course Outcome (CO's) - Description
			CO1: To understand an elementary idea of the nature of bonding in Main Group elements.
			CO2: To attain an idea about the transition metal complexes and their behavior.
1	MCHM101	Inorganic Chemistry-I	CO3: To appreciate the mechanism behind the inorganic reactions.
			CO4: To learn the application based information on metal ligand bonding.
			CO5: To develop an understanding about the various concepts under HSAB.
			CO1: To impart knowledge of mechanisms of substitution, addition, elimination and some named reactions in organic chemistry
- 4	A		CO2: Gain basic knowledge of stereochemistry of organic molecules.
2	MCHM102	Organic Chemistry-I	CO3: Learn chemistry of alkenes, alkynes, alkadienes, cycloalkanes, alkyl halides, Grignard's Reagent, Alcohols, ethers, carbonyl compounds, carboxylic acids and amines.
			CO4: Study about stereochemistry, principle and mechanism of same reaction
			CO5: To study IUPAC nomenclature of organic molecules
			CO1: Knowledge of Fundamentals of quantum mechanics , Exact Quantum Mechanical Results and differential calculus.
9	Shee 3		CO2: Basic knowledge about the Applications of Quantum Mechanics, Electron density,
			Directed Valences and Ionic Bonding and MO theory.
3	MCHM103	Physical Chemistry–I	CO3: Generating knowledge about the Importance of Huckel theory of conjugated systems bond and charge density calculations. Applications of angular momentum.
RAIP	UR INDIA		CO4: Comprehension of the basic knowledge of Concept of Brief resume of concepts of laws of thermodynamics and classical thermodynamics.
			CO5: Advance knowledge of Stastical Thermodynamics like Fermi-Dirac Statistics, distribution law and applications to metal. Bose-Einstein statistics distribution Law.
			CO1: Describe the interaction between electromagnetic radiations and atoms/molecules. Recognize spectroscopy in microwave, Rotational spectra of rigid diatomic molecules, selection rules, interaction of spectral lines.
			CO2: Understand Infrared spectroscopy and its applications to structural problems Study of Vibrating diatomic molecule, energy levels of a diatomic molecule, simple harmonic and anharmonic oscillator.
4	MCHM104	SPECTROSCOPY- I	CO3: Learn Electronic spectra of diatomic molecules. : Study and solve Photoelectron problems of spectroscopy of organic.

			CO4:	Study of Scattering of light and Raman Spectrum. rotational and vibrational Raman Spectra.
			CO5:	Basic principles, Significance of various terms and Techniques for surface analysis by X-ray diffraction. Understand Instrumentation, experimental techniques of Electron and Neutron diffraction.
			CO1:	Students will understand a general definition of research design.
			CO2:	Understand some basic concepts of research and its methodologies
5	MCHM105A	Research Methodology	CO3:	Students will know why educational research is undertaken, and the audiences that profit from research studies.
3	WCHWIOSA	Research Methodology	CO4:	Students will be able to identify the overall process of designing a research study from its inception to its report.
MA	177		CO5:	Students will be familiar with ethical issues in educational research, including those issues that arise in using quantitative and qualitative research
6	MCHM105B	Science Journalism	CO1:	They will appreciate the digital landscape within which science journalism exists today by learning: blogging in science journalism (honing your craft, developing a voice); how to get work (pitching and staying relevant); the value of social networks for science journalism (sharing stories, finding stories, joining discussions and finding sources); digital strategies employed by major news organizations (data visualization, multimedia, community building).
			CO2:	Students will analyze and learn about the structure of several types of data including numbers, texts and documents. Students will learn the skills to examine, evaluate, and critique those data, extract patterns, summarize features, create visualizations, and provide insights, while learning to be sensitive to ethical concerns associated.
RAIP	UR INDIA		CO3:	
			CO4:	Students will practice academic, and professional audiences and contexts using writing strategies, conventions, genres, technologies, and formats to communicate effectively
			CO5:	Students will learn the mechanics of science writing, including research, sourcing, and generating story.
			CO1:	To understand all the basic concepts of inorganic chemistry students will learn the applications of periodicity in properties
			CO2:	prepare the exact solutions for quantitative analysis
7	MCHM201	INORGANIC CHEMISTRY- II	CO3:	Apply the knowledge of quantitative analysis for the determination of metals from ores/alloys.

		Discuss classification of clusters and different structural patterns of metal clusters.
		Study the fundamentals of Pericyclic Reactions.
		Get the fundamentals of reduction reaction of organic molecules by reducing agent.
8 MCHM202 ORGANIC CH	HEMISTRY-II	The use of nuclear magnetic resonance spectroscopy, mass spectrometry and infrared spectroscopy for organic structure
	CO4:	The fundamental electronic structure and bonding in carbonyl compounds
	CO5:	The use of nuclear magnetic resonance spectroscopy, mass spectrometry and infrared spectroscopy for organic structure elucidation
	CO1:	They will understand pH and thermodynamics factors of solutions
	CO2:	chemical equilibrium and its relationship with themodynamic quantities
9 MCHM203 PHYSICAL CH		concepts in thermodynamics, different thermodynamic quantities such as heat and work and how they are measured, related or transformed from one to the other
9 WICHWI203 PHYSICAL CR	CO4:	Students were imparted knowledge on phase rule, its applications and introduced with
		the Current technological applications, as well as the most recent advances in the field.
	CO5:	chemical kinetics; how reaction rates are measured and represented in rate laws, and
3 3 3		applications of chemical kinetics in studying enzyme mechanisms
	CO1:	Explain the principle of NMR spectroscopy, instrumentation, chemical shifts, factors affecting them, signal integration, Spin-spin coupling, Coupling constants and factors
		affecting them and applications of NMR spectroscopy.
WING THISER	CO2:	Explain the principles of Rotational spectroscopy and calculate bond lengths and atomic
10 MCHM204 SPECTRO		mass from rotational spectra of diatomic molecules, Isotope effect on rotational spectra
10 MCHM204 SPECTRO	CO3:	Discuss the Classical and Quantum theories of Raman Effect.
	CO4:	Explain the principles of Ultraviolet/Visible Spectroscopy, Woodward-Fieser rules and
		their applications
	CO5:	Students will study Nuclear Magnetic Resonance Spectroscopy and Nuclear Quadruple Resonance Spectroscopy.
	CO1:	Clarity about the business idea. Market potential for the product or service. Skills in
		preparing business plan.
44 MOUNOSA Entropror		Students are able to create presentations and business plans that articulate and apply financial, operational, organizational, market, and sales knowledge to identify paths to value creation

11	MCHM2U5A	Entrepreneursnip	CO3:	Student manager will be able to list the objective and role of given institutions which supports the entrepreneurs
			CO4:	Student manager will be able to outline the role of entrepreneurship in economic development.
			CO5:	Entrepreneurship and Innovation minors will be able to find problems worth solving.
			CO1:	The students once they complete their academic projects, shall get an adequate knowledge on patent and copyright for their innovative research works during their research career, information in patent documents provide useful insight on novelty of their idea from state-of-the art search.
			CO2:	This course provide further way for developing their idea or innovations.
12	MCHM205B	Intellectual Property Right	CO3:	To Pave the way for the students to catch up Intellectual Property(IP) as an career option a. R&D IP Counsel b. Government Jobs – Patent Examiner c. Private Jobs d. Patent agent and Trademark agent e. Entrepreneur.
	(1/2		CO4:	Distinguish and explain various forms of IPRs.
			CO5:	Analyze rights and responsibilities of holder of Patent, Copyright, Trademark, and Industrial Designate.
-5			CO1:	Sort the natural goods into categories based on their structures.
à	17		CO2:	Understand the many types of amino acids, their structures, and their importance.
13	MCHM301	NATURAL PRODUCT	CO3:	Alkaloids' biofunctions and structures should be understood.
			CO4:	Recognize the biochemical actions and structures of terepenoids.
	KALING		CO5:	Understand the bio-functions and structures of steroids.
	ON DIVI		CO1:	Molecular recognition and nature of bindings involved in biological systems
RAIP	UR INDIA		CO2:	Structure of supramolecules of various types in solution and solid state
14	MCHM302	Organo-transition and	CO3:	Applications of supramolecules in miniaturization of molecular devices
'-	WOTHWOOL	Bioinorganic	CO4:	Kinetics and mechanism of enzyme catalysis.
			CO5:	Know and understand the different properties and structures for organometallic compounds from different parts of the periodic table and their trends
			CO1:	Different mechanisms of polymerization.
			CO2:	Number, weight and viscosity average molecular weights with various techniques
15	MCHM303A	POLYMER CHEMISTRY	CO3:	Processing of thermoplastic and thermosetting polymers.
			CO4:	· · · · · · · · · · · · · · · · · · ·
			CO5:	
			CO1:	Sort biochemistry into groups based on biochemical reactions and bioenergetics.

			CO2: Learn about the different types of amino acids and how important they are.
			CO3: Bio-functions of biological cells, metal ions, and metalloenzymes should all be understood.
16	МСНМ303В	BIOCHEMISTRY	CO4: Be able to undertake investigations and perform analyses that provide information about biochemical questions and help to solve biochemical problems.
			CO5: Learn the molecular structures of 20 amino acids, differentiating essential and non-essential amino acids, biologically important modified amino acids and their functions.
			CO1: Understand medicinal chemistry's history and principles.
			CO2: Determine the drug's classification and the link between structure and activity.
17	MCHM304A	Medicinal Chemistry	CO3: Understand the bio-mechanics of antibiotics as well as the routes by which they are synthesized.
			CO4: To know the structural activity relationship of different class of drugs
			CO5: Knowledge about the mechanism pathways of different class of medicinal compounds.
			CO1: Get knowledge about various topics of analytical chemistry such as Errors and Evaluation of measurements, Volumetric analysis, Gravimetric analysis and Separation techniques
18	MCHM304B	Analytical Chemistry	CO2: Study Radiochemical methods like Isotope Method, Inverse Isotopic Dilution, and Neutron activation technique.
			CO3: Study Electroanalytical Techniques like Conductometry, Potentiometry Voltametry and Polarography.
	TONGA UHINE		CO4: Study Thermoanalytical Methods like TGA, DTA and DSC
RATP	UR INDIA		CO5: Understand Spectral Methods like Nephleometry, Turbidimetry, Flame Photometry
			CO1: Learn the fundamentals of environmental chemistry and its many dimensions.
			CO2: Learn about the major sources of pollution.
19	MCHM401	Environmental Chemistry	CO3: I'll figure out how to control the analysis data.
13			CO4: Recognize the health risks that you face on a daily basis.
			CO5: Identify and evaluate the relative importance of various reactions, physical processes and transport mechanisms affecting different chemicals in the environment.
			CO1: Students will learn a variety of green chemical strategies based on current demands.
			CO2: To gain a better understanding of the current state and evolution of the environment.
			CO3: To have a better understanding of pollution and the steps that can be taken to prevent it familiarise yourself with green chemistry.

			CO4:	To gain a better understanding of bio-catalytic reactions.
			CO5:	To investigate the fundamental notion of nanomaterials.
20	MCHM402A	Green and Nano Chemistry	CO6:	To understand how nanoparticles are classified.
				To familiarize oneself with the physical and chemical approach for production of nanomaterials.
			CO8:	To gain a better understanding of nanomaterial biosynthesis.
			CO9:	To gain knowledge on nanocomposite materials.
				To investigate the dangers of nanotechnology with better understanding of nanotechnology's safety.
				Formulate the macroscopic and quantum laws of the absorption of light by molecules and solids
.44			CO2:	Describe the various deactivation processes of molecular excited states
21	MCHM402B	Photo Chemistry	CO3:	Quote the various types of photochemical reactions
			CO4:	Represent the mechanisms of natural photochemical processes
				Explain the basic principles of the thermodynamics and kinetics of photoinduced electron transfer
			CO1:	Have sound knowledge of cosmetics and perfumes.
8	The B		CO2:	Become well equipped to design, carry out, record and analyze the industrial
_ %				preparations.
22	MCHM402C	INDUSTRIAL AND FUEL CHEMISTRY		Understand the ethical, historic, philosophical, and environmental dimensions of problems and issues facing industrial chemists.
	TID ITALIA		CO4:	Become skilled in problem solving, critical thinking and analytical reasoning.
KAIP	UK INDIA		CO5:	Identify and solve chemical problems and explore new innovative areas of research.