SCHEME OF EXAMINATION

&

DETAILED SYLLABUS

For

Master of Computer Application (w.e.f. 2020 – 2021)

FACULTY OF INFORMATION TECHNOLOGY Kalinga University, Naya Raipur, Chhattisgarh

MCA (MASTER OF COMPUTER APPLICATION) MCA FIRST YEAR, 2020-21

S.No	Subject	Subject Name	Periods		Sessional		ESE	Total	Credit		
•	Code		L	Т	Р	CT	TA	Total			
1.	MCA101	Fundamental of Computers &	3	0	0	30	20	50	100	150	4
		Emerging Technologies									
2.	MCA102	Problem Solving using C	3	1	0	30	20	50	100	150	4
		Principles and Practices of									
3.	MCA103	Management	3	0	0	30	20	50	100	150	3
4.	MCA104	Discrete Mathematics	3	0	0	30	20	50	100	150	4
5.	MCA105	Computer Organization &	3	1	0	30	20	50	100	150	4
		Architecture									
6.	MCA106P	Problem Solving using C	0	0	4	30	20	50	50	100	2
		Lab									
7.	MCA107P	Computer Organization &	0	0	3	30	20	50	50	100	2
		Architecture Lab									
Total									950	23	
CT: Class Test TA: Teacher Assessment L/T/P: Lecture/ Tutorial/ Practical											

SEMESTER-I

SEMESTER-II

S.No	Subject	Subject Name	Periods		S	Session	al	ESE	Total	Credit	
•	Code		L	Т	Р	CT	TA	Total			
1.	MCA201	Theory of Automata & Formal Languages	3	0	0	30	20	50	100	150	3
2.	MCA202	Object Oriented Programming	3	1	0	30	20	50	100	150	4
3.	MCA203	Operating Systems	3	0	0	30	20	50	100	150	3
4.	MCA204	Database Management Systems	3	0	0	30	20	50	100	150	3
5.	MCA205	Data Structures & Analysis of Algorithms	3	1	0	30	20	50	100	150	4
6.	MCA206P	Object Oriented Programming Lab	0	0	3	30	20	50	50	100	2
7.	MCA207P	DBMS Lab	0	0	3	30	20	50	50	100	2
8.	MCA208P	Data Structures & Analysis of Algorithms Lab	0	0	4	30	20	50	50	100	2
		Total								1050	23

CT: Class Test TA: Teacher Assessment L/T/P: Lecture/ Tutorial/ Practical

Syllabus

MCA 1st Year Ist Semester

MCA (MASTER OF COMPUTER APPLICATION) FIRST YEAR SYLLABUS SEMESTER-I

MCA101: FUNDAMENTAL OF COMPUTERS & EMERGING TECHNOLOGIES						
	Course Outcome (CO) Bloom's Knowledge Level (KL)				
	At the end of course, the student will be able to					
CO 1	Demonstrate the knowledge of the basic structure, components, features and generations of computers.	K ₁ , K ₂				
CO 2	Describe the concept of computer languages, language translators and construct algorithms to solve problems using programming concepts.	K K 2, 3				
CO 3	Compare and contrast features, functioning & types of operating system and computer networks.	К 4				
CO 4	Demonstrate architecture, functioning & services of the Internet and basics of multimedia.	K ₂				
CO 5	Illustrate the emerging trends and technologies in the field of Information Technology.	K ₁ , K ₂				
	DETAILED SYLLABUS	3-0-0				
Unit	Торіс	Proposed Lecture				
Ι	Introduction to Computer: Definition, Computer Hardware & Computer					
	Software Components: Hardware – Introduction, Input devices, Output devices, Central Processing Unit, Memory- Primary and Secondary. Software - Introduction, Types – System and Application.					
	Computer Languages: Introduction, Concept of Compiler, Interpreter & Assembler Problem solving concept: Algorithms – Introduction, Definition, Characteristics, Limitations, Conditions in pseudo-code, Loops in pseudo code.	08				
II	Operating system: Definition, Functions, Types, Classification, Elements of command based and GUI based operating system. Computer Network: Overview, Types (LAN, WAN and MAN), Data communication, topologies.	08				
III	Internet : Overview, Architecture, Functioning, Basic services like WWW, FTP, Telnet, Gopher etc., Search engines, E-mail, Web Browsers. Internet of Things (IoT): Definition, Sensors, their types and features, Smart Cities, Industri Internet of Things.	al				
IV	Block chain: Introduction, overview, features, limitations and application areas fundamentals of Block Chain. Crypto currencies: Introduction, Applications and use cases Cloud Computing: It nature and benefits, AWS, Google, Microsoft & IBM Services	08				
V	Emerging Technologies: Introduction, overview, features, limitations and application areas of Augmented Reality, Virtual Reality, Grid computing, Green computing, Big data analytics, Quantum Computing and Brain Computer Interface	08				
Suggested R 1. Rajarama 2. Norton P. 3. Goel A., ' 4. Balagurus 5. Thareja R 6. Bindra J.,	eadings: n V., "Fundamentals of Computers", Prentice-Hall of India. , "Introduction to Computers", McGraw Hill Education. Computer Fundamentals", Pearson. amy E., "Fundamentals of Computers", McGraw Hill , "Fundamentals of Computers", Oxford University Press. "The Tech Whisperer- on Digital Transformation and the Technologies that Enable	it ", Penguin				

MCA102 :PROBLEM SOLVING USING C				
	Course Outcome (CO) Bloom's Knowledge	Level (KL)		
	At the end of course , the student will be able to			
	Describe the functional components and fundamental concepts of a			
CO 1	digital computer system including number systems.	K ₁ , K ₂		
CO 2	Construct flowchart and write algorithms for solving basic problems.	K ₂ , K ₃		
	Write 'C' programs that incorporate use of variables, operators and			
CO 3	expressions along with data types.	K ₂ , K ₃		
	Write simple programs using the basic elements like control statements,			
CO 4	functions, arrays and strings.	K ₂ , K ₃		
	Write advanced programs using the concepts of pointers, structures,			
CO 5	unions and enumerated data types.	K ₂ , K ₃		
	Apply pre-processor directives and basic file handling and graphics			
CO 6	operations in advanced programming.	K_2, K_3		
	DETAILED SYLLABUS	3-1-0		
Unit	Торіс	Proposed		
		Lecture		
	Basics of programming: Approaches to problem solving, Use of high	08		
	level programming language for systematic development of programs,			
	Concept of algorithm and flowchart, Concept and role of structured			
	programming. Paging of C. Uistowy of C. Solient factures of C. Structure of C. Program			
	Compiling C Program Link and Pup C Program Character set Tokans			
	Keywords, Identifiers, Constants, Variables, Instructions, Data types			
	Standard Input/Output Operators and expressions			
п	Conditional Program Execution: if if else and nested if else	08		
	statements Switch statements Restrictions on switch values Use of	00		
	break and default with switch Comparison of switch and if-else			
	Loops and Iteration: for, while and do-while loops. Multiple loop			
	variables, Nested loops, Assignment operators, break and continue			
	statement.			
	Functions: Introduction, Types, Declaration of a Function, Function			
	calls, Defining functions, Function Prototypes, Passing arguments to a			
	function Return values and their types, Writing multifunction program,			
	Calling function by value, Recursive functions.			
III	Arrays: Array notation and representation, Declaring one-dimensional	08		
	array, Initializing arrays, Accessing array elements, Manipulating array			
	elements, Arrays of unknown or varying size, Two-dimensional arrays,			
	Multidimensional arrays.			
	Pointers: Introduction, Characteristics, * and & operators, Pointer type			
	declaration and assignment, Pointer arithmetic, Call by reference,			
	Passing pointers to functions, arrayof pointers, Pointers to functions,			
	Pointer to pointer, Array of pointers.			
	Strings: Introduction, Initializing strings, Accessing string elements,			
	Array of strings, Passing strings to functions, String functions.			

IV	Structure: Introduction, Initializing, defining and declaring structure,	08			
	Accessing members, Operations on individual members, Operations on				
	structures, Structure within structure, Array of structure, Pointers to				
	structure.				
	Union: Introduction, Declaring union, Usage of unions, Operations on				
	union. Enumerated data types				
	Storage classes: Introduction, Types- automatic, register, static and				
	external.				
V	Dynamic Memory Allocation : Introduction, Library functions –	08			
	malloc, calloc, realloc and free.				
	File Handling: Basics, File types, File operations, File pointer, File				
	opening modes, File handling functions, File handling through command				
	line argument, Record I/O in files.				
	Graphics: Introduction, Constant, Data types and global variables used				
	in graphics, Library functions used in drawing, Drawing and filling				
	images, GUI interaction within the program.				
Suggest	ed Readings:				
1. Kane	etkar Y., "Let Us C", BPB Publications.				
2. Hanl	y J. R. and Koffman E. B., "Problem Solving and Program Design in C", Pea	rson			
Edu	cation.				
3. Schi	ldt H., "C- The Complete Reference", McGraw-Hill.				
4. Goya	4. Goyal K. K. and Pandey H.M., Trouble Free C", University Science Press				
5. Gott	5. Gottfried B., "Schaum's Outlines- Programming in C", McGraw-Hill Publications.				
6. Kocł	6. Kochan S.G., "Programming in C", Addison-Wesley.				
7. Dey	P. and Ghosh M., "Computer Fundamentals and Programming in C", Oxford	l			
Univ	versity Press.				

8.Goyal K. K., Sharma M. K. and Thapliyal M. P. "Concept of Computer and C Programming", University Science Press.

Principles and Practices of Management MCA-103

	Course Outcome (CO) Bloom's Knowledge	Level (K
	At the end of course, the student will be able to	
CO 1	Describe primary features, processes and principles of management.	K ₂ , K ₃
CO 2	Explain functions of management in terms of planning, decision making and organizing.	K ₂ , K ₂
CO 3	Illustrate key factors of leadership skill in directing and controlling business resources and processes.	K ₅ , K ₆
	DETAILED SYLLABUS	
Unit	Торіс	Propos Lectur
I	Management: Concept, Nature, Importance; Management: Art and Science, Management As a Profession, Management Vs. Administration, Management Skills, Levels of Management,	10
	 Characteristics of Quality Managers. Evolution of Management: Early contributions, Taylor and Scientific Management, Fayol's Administrative Management, Bureaucracy, Hawthorne Experiments and Human Relations, Social System Approach, Decision Theory Approach. Business Ethics and Social Responsibility: Concept, Shift to Ethics, Tools of Ethics 	
П	Introduction to Functions of Management, Planning: Nature, Scope, Objectives and Significance of Planning, Types of Planning, Process of Planning, Barriers to Effective Planning, Planning Premises and Forecasting, Key to Planning, Decision Making. Organizing: Concept, Organization Theories, Forms of Organizational Structure, Combining Jobs: Departmentation, Span of Control, Delegation of Authority, Authority & Responsibility, Organizational Design.	10
III	Staffing: Concept, System Approach, Manpower Planning, Job Design, Recruitment & Selection, Training & Development, Performance Appraisal, Directing: Concept, Direction and Supervision, Motivation: Concept, Motivation and Performance, Theories Of Motivation, Approaches for Improving Motivation, Pay and Job Performance, Quality of Work Life, Morale Building.	10
IV	Leadership: The Core of Leadership: Influence, Functions of Leaders, Leadership Style, Leadership Development.Communication: Communication Process, Importance of Communication, Communication Channels, Barriers to Communication. Controlling: Concept, Types of Control, Methods: Pre-control: Concurrent Control: Post-control, An Integrated Control System, The Quality Concept Factors affecting Quality, Developing a Quality Control System, Total Quality Control, Pre-control of Inputs, Concurrent Control of Operations. Post Control of Outputs. Change and Development: Model for Managing Change, Forces for Change, Need for Change, Alternative Change Techniques, New Trends in Organisational Change.	10

Koontz , "Principles of Management", Tata Mc Graw Hill, 1st Ed., 2008.
 Robbins and Coulter, "Management", PHI, 8th Ed.

Reference Books:

1. Robbins S. P. and Decenzo David, "A. - Fundamentals of Management: Essential

Concepts and Applications", Pearson Education, 5th Ed.

2. Hillier Frederick S. and Hillier Mark S. - Introduction to Management Science: A

Modeling and Case Studies Approach with Spreadsheets, Tata Mc Graw Hill, 2nd Ed., 2008.

3. Weihrich Heinz and Koontz Harold, "Management: A Global and Entrepreneurial Perspective", Mc Graw Hill, 12th Ed., 2008.

4. R. Satya Raju and A. Parthasarathy, "Management Text and Classes", PHI, 2nd Ed., 2009.

	MCA104 : Discrete Mathematics	
	Course Outcome (CO) Bloom's Knowledge Level (KL)	
	At the end of course , the student will be able to	,
CO 1	Use mathematical and logical notation to define and formally reason about basic discrete structures such as Sets, Relations and Functions	K ₁ , K ₂
CO 2	Apply mathematical arguments using logical connectives and quantifiers to check the validity of an argument through truth tables and propositional and predicate logic	K K 2, 3
CO 3	Identify and prove properties of Algebraic Structures like Groups, Rings and Fields	K ₃ , K ₄
CO 4	Formulate and solve recurrences and recursive functions	K ₃ , K ₄
CO 5	Apply the concept of combinatorics to solve basic problems in discrete mathematics	K ₁ , K ₃
	DETAILED SYLLABUS	3-0-0
Unit	Торіс	Proposed Lecture
I	 Set Theory: Introduction, Size of sets and Cardinals, Venn diagrams, Combination of sets, Multisets, Ordered pairs and Set Identities. Relation: Definition, Operations on relations, Composite relations, Properties of relations, Equality of relations, Partial order relation. Functions: Definition, Classification of functions, Operations on functions, Recursively defined functions. 	08
II	 Posets, Hasse Diagram and Lattices: Introduction, Partial ordered sets, Combination of Partial ordered sets, Hasse diagram, Introduction of lattices, Properties of lattices – Bounded, Complemented, Modular and Complete lattice. Boolean Algebra: Introduction, Axioms and Theorems of Boolean algebra, Boolean functions. Simplification of Boolean functions, Karnaugh maps, Logic gates. 	08
III	 Propositional: Propositions, Truth tables, Tautology, Contradiction, Algebra of Propositions, Theory of Inference and Natural Detection. Predicate Logic: Theory of Predicates, First order predicate, Predicate formulas, Quantifiers, Inference theory of predicate logic. 	08
IV	Algebraic Structures: Introduction to algebraic Structures and properties. Types of algebraic structures: Semi group, Monoid, Group, Abelian group and Properties of group. Subgroup, Cyclic group, Cosets, Permutation groups, Homomorphism and Isomorphism of groups. Rings and Fields: Definition and elementary properties of Rings and Fields.	08
V	Natural Numbers: Introduction, Piano's axioms, Mathematical Induction, Strong Induction and Induction with Nonzero Base cases. Recurrence Relation & Generating functions: Introduction and properties of Generating Functions. Simple Recurrence relation with constant coefficients and Linear recurrence relation without constant coefficients. Methods of solving recurrences. Combinatorics: Introduction, Counting techniques and Pigeonhole principle, Polya's Counting theorem.	08
Suggest 1. 2. 3. 4.	ed Readings: Kenneth H. Rosen, "Discrete Mathematics and Its Applications", McGraw Hill, 2006. B. Kolman, R.C Busby and S.C Ross, "Discrete Mathematics Structures", Prentice Hall, R.P Girimaldi, "Discrete and Combinatorial Mathematics", Addison Wesley, 2004. Y.N. Singh, "Discrete Mathematical Structures", Wiley- India, First edition, 2010.	,2004.

5. Swapankumar Sarkar, "A Textbook of Discrete Mathematics", S. Chand & Company PVT. LTD.V.

6. Krishnamurthy, "Combinatorics Theory & Application", East-West Press Pvt. Ltd., New Delhi.

7. Liptschutz, Seymour, "Discrete Mathematics", McGraw Hill.

8. J.P. Trembely&R.Manohar, "Discrete Mathematical Structure with application to Computer Science", McGraw Hill.

MCA105 : COMPUTER ORGANIZATION & ARCHITECTURE					
	Course Outcome (CO) Bloom's Knowledge Level (KL)				
	At the end of course , the student will be able to				
CO 1	Describe functional units of digital system and explain how arithmetic and logical operations are performed by computers	K ₂ , K ₃			
CO 2	Describe the operations of control unit and write sequence of instructions for carrying out simple operation using various addressing modes.	K ₂ , K ₄			
CO 3	Design various types of memory and its organization.	к 3			
CO 4	Describe the various modes in which IO devices communicate with CPU and memory.	K ₂ , K ₃			
CO 5	List the criteria for classification of parallel computer and describe various architectural schemes.	K ₁ , K ₂			
	DETAILED SYLLABUS	3-1-0			
Unit	Торіс	Proposed Lecture			
I	Introduction: Functional units of digital system and their interconnections, buses, bus architecture, types of buses and bus arbitration. Register, bus and memory transfer. Processor organization: general registers organization, stack organization and addressing modes.	08			
Π	Arithmetic and logic unit: Look ahead carries adders. Multiplication: Signed operand multiplication, Booths algorithm and array multiplier. Division and logic operations. Floating point arithmetic operation, Arithmetic & logic unit design. IEEE Standard for Floating Point Numbers.	08			
ш	Control Unit: Instruction types, formats, instruction cycles and sub cycles (fetch and execute etc), micro operations, execution of a complete instruction. Program Control, Reduced Instruction Set Computer, Pipelining. Hardwire and micro programmed control: micro-program sequencing, concept of horizontal and vertical microprogramming.	08			
IV	Memory: Basic concept and hierarchy, semiconductor RAM memories, 2D & 2 1/2D memory organization. ROM memories. Cache memories: concept and design issues & performance, address mapping and replacement Auxiliary memories: magnetic disk, magnetic tape and optical disks Virtual memory: concept implementation.	08			
V	Input / Output: Peripheral devices, I/O interface, I/O ports, Interrupts: interrupt hardware, types of interrupts and exceptions. Modes of Data Transfer: Programmed I/O, interrupt initiated I/O and Direct Memory Access., I/O channels and processors. Serial Communication: Synchronous & asynchronous communication, standard communication interfaces.	08			
Suggest	ted Readings:				
1	John P. Haves "Computer Architecture and Organization" McGraw Hill				
2	William Stallings "Computer Organization and Architecture Designing for Derformance	" Doorgon			
2.	Education.	e, rearson			
5.	W. MOITIS Mano, "Computer System Architecture", PHI.				
4.	Carl Hamacner, Zvonko vranesic, SafwatZaky, "Computer Organization", McGraw-Hill	•			
5.	BehroozParahami, "Computer Architecture", Oxford University Press.				

- 6. David A. Patterson and John L. Hennessy, "Computer Architecture-A Quantitative Approach", Elsevier Pub.
- 7. Tannenbaum, "Structured Computer Organization", PHI.

MCA106P: PROBLEM SOLVING USING C LAB

	Course Outcome (CO)	Bloom's Knowled ge Level (KL)			
	At the end of course , the student will be able to				
CO1	Write, compile, debug and execute programs in a C programming environment.	K 3			
CO2	Write programs that incorporate use of variables, operators and expressions along with data types.	K 3			
CO3	Write programs for solving problems involving use of decision control structures and loops.	K ₃			
CO4	Write programs that involve the use of arrays, structures and user defined functions.	K ₃			
CO5	Write programs using graphics and file handling operations.	K3			
	 Program to implement conditional statements in C language. Program to implement switch-case statement in C language Program to implement looping constructs inC language. Program to perform basic input-output operations in C language. Program to implement user defined functions in C language. Program to implement recursive functions in C language. Program to implement one-dimensional arrays in C language. Program to implement two-dimensional arrays in C language. Program to perform various operations on two-dimensional arrays in C language. Program to implement multi-dimensional arrays in C language. Program to implement string manipulation functions in C language. Program to implement union in C language. Program to perform file handling operations in C language. 	nguage.			
Note: T justified	Note: The Instructor may add/delete/modifyexperiments, wherever he/she feels in a justified manner.				

MCA107P: COMPUTER ORGANIZATION & ARCHITECTURE LAB					
	Course Outcome (CO)	Bloom's Knowled ge Level (KL)			
	At the end of course , the student will be able to				
CO1	Design and verify combinational circuits (adder, code converter, decoder, multiplexer) using basic gates.	K ₆			
CO2	Design and verify various flip-flops.	K3			
CO3	Design I/O system and ALU.	K3			
CO4	Demonstrate combinational circuit using simulator	K2			
 Implementing HALF ADDER, FULL ADDER using basic logic gates. Implementing Binary -to -Gray, Gray -to -Binary code conversions. Implementing 3-8 line DECODER. Implementing 4x1 and 8x1 MULTIPLEXERS. Verify the excitation tables of various FLIP-FLOPS. Design of an 8-bit Input/ Output system with four 8-bit Internal Registers. Design of an 8-bit ARITHMETIC LOGIC UNIT. Design the data path of a computer from its register transfer language description. Design the control unit of a computer using either hardwiring or microprogramming based on its register transfer language description. Implement a simple instruction set computer with a control unit and a data path. 					
Note: The Instructor may add/delete/modify/tune experiments, wherever he/she feels in a justified manner.					

Syllabus

MCA 1st Year IInd Semester

MCA (MASTER OF COMPUTER APPLICATION) FIRST YEAR SYLLABUS SEMESTER-II

MCA201: THEORY OF AUTOMATA & FORMAL LANGUAGES				
	Course Outcome (CO) Bloom's Knowledge Level (K	L)		
	At the end of course , the student will be able to			
	Define various types of automata for different classes of formal			
CO 1	languages and explain their working.	K ₁ , K ₂		
CO 2	State and prove key properties of formal languages and automata.	K ₁ , K ₃		
	Construct appropriate formal notations (such as grammars, acceptors,			
CO 3	transducers and regular expressions) for given formal languages.	K3, K4		
CO 4	Convert among equivalent notations for formal languages.	K 3		
	Explain the significance of the Universal Turing machine, Church-			
CO 5	Turing thesis and concept of Undecidability.	K 2		
	DETAILED SYLLABUS	3-0-0		
Unit	Торіс	Proposed		
		Lecture		
I	Basic Concepts and Automata Theory: Introduction to Theory			
	of Computation- Automata, Computability and Complexity, Alphabet,			
	Symbol, String, Formal Languages, Deterministic Finite Automaton	08		
	(DFA)- Definition, Representation, Acceptability of a String and			
	Language, Non Deterministic Finite Automaton (NFA), Equivalence of			
	DFA and NFA, NFA with ε - i ransition, Equivalence of NFA's with			
	and without E-Transition, Finite Automata with output- Moore			
	Minimization of Finite Automate Mubill Nerode Theorem Simulation			
	of DEA and NEA			
TT	Of DTA and NTA.			
11	Graph Kleen's Theorem Finite Automata and Regular Expression-			
	Arden's theorem Algebraic Method Using Arden's Theorem	08		
	Regular and Non-Regular Languages- Closure properties of Regular	00		
	Languages, Pigeonhole Principle, Pumping Lemma, Application of			
	Pumping Lemma, Decidability- Decision properties, Finite			
	Automata and Regular Languages, Regular Languages and			
	Computers, Simulation of Transition Graph and Regular language.			
III	Regular and Non-Regular Grammars: Context Free			
	Grammar(CFG)-Definition, Derivations, Languages, Derivation			
	Trees and Ambiguity, Regular Grammars-Right Linear and Left	08		
	Linear grammars, Conversion of FA into CFG and Regular grammar			
	into FA, Simplification of CFG, Normal Forms- Chomsky			
	Normal Form(CNF), Greibach Normal Form (GNF), Chomsky			
	Hierarchy, Programming problems based on the properties of CFGs.			
IV	Push Down Automata and Properties of Context Free Languages:			
	Nondeterministic Pushdown Automata (NPDA)- Definition, Moves,			
	A Language Accepted by NPDA, Deterministic Pushdown	08		
	Automata(DPDA) and Deterministic Context free Languages(DCFL),			

	Pushdown Automata for Context Free Languages, Context Free grammars for Pushdown Automata Two stack Pushdown Automata	
	Pumping Lemma for CFL, Closure properties of CFL, Decision	
	Problems of CFL, Programming problems based on the properties of	
	CFLs.	
V	Turing Machines and Recursive Function Theory : Basic	
	Turing Machine Model, Representation of Turing Machines,	
	Language Acceptability of Turing Machines, Techniques for Turing Machine Construction, Modifications of Turing Machine, Turing Machine as Computer of Integer Functions, Universal Turing	08
	machine. Linear Bounded Automata. Church's Thesis. Recursive and	
	Recursively Enumerable language, Halting Problem, Post	
	Correspondence Problem, Introduction to Recursive Function Theory.	
Sugges	ted Readings:	
1.	J.E. Hopcraft, R. Motwani, and Ullman, "Introduction to Automata theory, Languages and Computation", Pearson EducationAsia,2nd Edition.	
2.	J. Martin, "Introduction to languages and the theory of computation", McGr 3rd Edition.	raw Hill,
3.	C. Papadimitrou and C. L. Lewis, "Elements and Theory of Computation",	PHI.
4.	K.L.P. Mishra and N. Chandrasekaran ,"Theory of Computer Science Auto Languages and Computation", PHI.	mata
5.	Y.N. Singh, "Mathematical Foundation of Computer Science", New Age International.	

	MCA202 : OBJECT ORIENTED PROGRAMMING	
Course Outcome (CO) Bloom's Knowledge Level (KL)		
	At the end of course , the student will be able to	
CO 1	List the significance and key features of object oriented programming and modeling using UML	K4
	Construct basic structural, behavioral and architectural models using object oriented	K
CO 2	software engineering approach.	6
CO 3	Integrate object oriented modeling techniques for analysis and design of a system.	K K 4, 5
CO 4	Use the basic features of data abstraction and encapsulation in C++ programs.	K 4
CO 5	Use the advanced features such as Inheritance, polymorphism and virtual function in C++ programs.	K ₃ , K ₄
	DETAILED SYLLABUS	3-1-0
Unit	Торіс	Proposed
		Lecture
I	Introduction: Object Oriented Programming: objects, classes, Abstraction, Encapsulation, Inheritance, Polymorphism, OOP in Java, Characteristics of Java, The Java Environment, Java Source File Structure, and Compilation. Fundamental Programming Structures in Java: Defining classes in Java, constructors, methods, access specifies, static members, Comments, Data Types, Variables, Operators, Control Flow, Arrays.	08
Π	Inheritance, Interfaces, and Packages: Inheritance: Super classes, sub classes, Protected members, constructors in sub classes, Object class, abstract classes and methods. Interfaces: defining an interface, implementing interface, differences between classes and interfaces and extending interfaces, Object cloning, inner classes.	08
	Packages: Defining Package, CLASSPATH Setting for Packages, Making JAR Files for Library Packages, Import and Static Import Naming Convention For Packages, Networking java.net package.	00
111	exceptions, built-in exceptions, creating own exceptions, Stack Trace Elements. Input / Output Basics: Byte streams and Character streams, Reading and Writing, Console Reading and Writing Files.	08
IV	Multithreading and Generic Programming: Differences between multi-threading and multitasking, thread life cycle, creating threads, synchronizing threads, Inter-thread communication, daemon threads, thread groups. Generic Programming: Generic classes, generic methods, Bounded Types: Restrictions and Limitations.	08
V	Event Driven Programming: Graphics programming: Frame, Components, working with 2D shapes, Using colors, fonts, and images. Basics of event handling: event handlers, adapter classes, actions, mouse events, AWT event hierarchy. Introduction to Swing: layout management, Swing Components: Text Fields, Text Areas, Buttons, Check Boxes, Radio Buttons, Lists, choices, Scrollbars, Windows Menus and Dialog Boxes.	08
Suggested Readings:		
1.	Herbert Schildt, "Java The complete referencel", McGraw Hill Education, 8th Edition, 2	011.
2.	 Cay S. Horstmann, Gary Cornell, "Core Java Volume –I Fundamentals", Prentice Hall, 9th Edition, 2013. 	
3.	Steven Holzner, "Java Black Book", Dreamtech.	
4.	Balagurusamy E, "Programming in Java", McGraw Hill	
5.	Naughton, Schildt, "The Complete reference java2", McGraw Hill	
6.	Khalid Mughal, "A Programmer's Guide to Java SE 8 Oracle Certified Associate (OCA) Wesley.)", Addison-

MCA203 : OPERATING SYSTEMS		
Course Outcome (CO) Bloom's Knowledge Level (KL)		
	At the end of course , the student will be able to	
CO 1	Explain main components, services, types and structure of Operating Systems.	K2
	Apply the various algorithms and techniques to handle the various concurrency	
CO 2	control issues.	K3
CO 3	Compare and apply various CPU scheduling algorithms for process execution.	K ₂
CO 4	Identify occurrence of deadlock and describe ways to handle it.	K 3
<u>CO 5</u>	Explain and apply various memory, I/O and disk management techniques.	K5
TT.4	DETAILED SYLLABUS	3-0-0
Unit	Горіс	Proposed
I	Introduction: Operating System Structure- Layered structure, System Components, Operating system functions, Classification of Operating systems- Batch, Interactive, Time sharing, Real Time System, Multiprocessor Systems, Multiuser Systems, Multi process Systems, Multithreaded Systems, Operating System services, Reentrant Kernels, Monolithic and Microkernel Systems.	08
II	Concurrent Processes: Process Concept, Principle of Concurrency, Producer / Consumer Problem, Mutual Exclusion, Critical Section Problem, Dekker's solution, Peterson's solution, Semaphores, Test and Set operation, Classical Problem in Concurrency- Dining Philosopher Problem, Sleeping Barber Problem, Inter Process Communication models and Schemes, Process generation.	08
III	CPU Scheduling: Scheduling Concepts, Performance Criteria, Process States, Process Transition Diagram, Schedulers, Process Control Block (PCB), Process address space, Process identification information, Threads and their management, Scheduling Algorithms, Multiprocessor Scheduling. Deadlock: System model, Deadlock characterization, Prevention, Avoidance and detection, Recovery from deadlock.	08
IV	Memory Management: Basic bare machine, Resident monitor, Multiprogramming with fixed partitions, Multiprogramming with variable partitions, Protection schemes, Paging, Segmentation, Paged segmentation, Virtual memory concepts, Demand paging, Performance of demand paging, Page replacement algorithms, Thrashing, Cache memory organization, Locality of reference.	08
V	I/O Management and Disk Scheduling : I/O devices, and I/O subsystems, I/O buffering, Disk storage and disk scheduling, RAID. File System: File concept, File organization and access mechanism, File directories, and File sharing, File system implementation issues, File system protection and security.	08
Suggest 1. 2. 3. 4. 5.	red Readings: Silberschatz, Galvin and Gagne, "Operating Systems Concepts", Wiley Publication. Sibsankar Halder and Alex A Arvind, "Operating Systems", Pearson Education. Harvey M Dietel, "An Introduction to Operating System", Pearson Education. William Stallings, "Operating Systems: Internals and Design Principles", 6th Editi Pearson Education. Harris, Schaum's Outline Of Operating Systems, McGraw Hill	on,

MCA204 : DATABASE MANAGEMENT SYSTEMS

Course Outcome (CO) Bloom's Knowledge Level (KL)			
	At the end of course , the student will be able to		
CO 1	Describe the features of a database system and its application and compare various types of data models.	K ₂	
CO 2	Construct an ER Model for a given problem and transform it into a relation database schema.	K ₅ , K ₆	
CO 3	Formulate solution to a query problem using SQL Commands, relational algebra, tuple calculus and domain calculus.	K ₅ , K ₆	
CO 4	Explain the need of normalization and normalize a given relation to the desired normal form.	K ₂ , K ₃	
CO 5	Explain different approaches of transaction processing and concurrency control.	<u>к</u> 2	
	DETAILED SYLLABUS	3-0-0	
Unit	Торіс	Proposed Lecture	
I	Introduction: Overview, Database System vs File System, Database System Concept and Architecture, Data Model Schema and Instances, Data Independence and Database Language and Interfaces, Data Definitions Language, DML, Overall Database Structure. Data Modeling Using the Entity Relationship Model: ER Model Concepts, Notation for ER Diagram, Mapping Constraints, Keys, Concepts of Super Key, Candidate Key, Primary Key, Generalization, Aggregation, Reduction of an ER Diagrams to Tables, Extended ER Model, Relationship of Higher Degree.	08	
Π	Relational data Model and Language: Relational Data Model Concepts, Integrity Constraints, Entity Integrity, Referential Integrity, Keys Constraints, Domain Constraints, Relational Algebra, Relational Calculus, Tuple and Domain Calculus. Introduction to SQL: Characteristics of SQL, Advantage of SQL. SQL Data Type and Literals. Types of SQL Commands. SQL Operators and their Procedure. Tables, Views and Indexes. Queries and Sub Queries. Aggregate Functions. Insert, Update and Delete Operations, Joins, Unions, Intersection, Minus, Cursors, Triggers, Procedures in SQL/PL SQL	08	
III	Data Base Design & Normalization: Functional dependencies, normal forms, first, second, third normal forms, BCNF, inclusion dependence, loss less join decompositions, normalization using FD, MVD, and JDs, alternative approaches to database design	08	
IV	Transaction Processing Concept: Transaction System, Testing of Serializability, Serializability of Schedules, Conflict & View Serializable Schedule, Recoverability, Recovery from Transaction Failures, Log Based Recovery, Checkpoints, Deadlock Handling. Distributed Database: Distributed Data Storage, Concurrency Control, Directory System	08	
V	Concurrency Control Techniques: Concurrency Control, Locking Techniques for Concurrency Control, Time Stamping Protocols for Concurrency Control, Validation Based Protocol, Multiple Granularity, Multi Version Schemes, Recovery with Concurrent Transaction, Case Study of Oracle.	08	
Suggest	ted Readings:		
1.	Korth, Sılbertz, Sudarshan," Database Concepts", McGraw Hill.		
2.	Date C J, "An Introduction to Database Systems", Addision Wesley.		
3.	Elmasri, Navathe, "Fundamentals of Database Systems", Addision Wesley.		
4.	O'Neil, "Databases", Elsevier Pub.		
5.	Ramakrishnan, "Database Management Systems", McGraw Hill.		
6.	Leon &Leon,"Database Management Systems", Vikas Publishing House.		
7.	Bipin C. Desai, "An Introduction to Database Systems", Gagotia Publications.		
8.	Majumdar& Bhattacharya, "Database Management System", McGraw Hill.		

MCA205: DATA STRUCTURES & ANALYSIS OF ALGORITHMS		
	Course Outcome (CO)	Bloom's Knowledge Level (KL)
	At the end of course , the student will be able to	
CO 1	Explain the concept of data structure, abstract data types, algorithms, analysis of algorithms and basic data organization schemes such as arrays and linked lists.	K ₂
CO 2	Describe the applications of stacks and queues and implement various operations on them using arrays and linked lists.	K ₃
CO 3	Describe the properties of graphs and trees and implement various operations such as searching and traversal on them.	K 3
CO 4	Compare incremental and divide-and-conquer approaches of designing algorithms for problems such as sorting and searching.	K ₄
CO 5	Apply and analyze various design approaches such as Divide-and-Conquer, greedy and dynamic for problem solving .	K 4
	DETAILED SYLLABUS	4-0-0
Unit	Торіс	Proposed Lecture
Ι	Introduction to data structure: Data, Entity, Information, Difference between Data and Information, Data type, Build in data type, Abstract data type, Definition of data structures, Types of Data Structures: Linear and Non-Linear Data Structure, Introduction to Algorithms: Definition of Algorithms, Difference between algorithm and programs, properties of algorithm, Algorithm Design Techniques, Performance Analysis of Algorithms, Complexity of various code structures, Order of Growth, Asymptotic Notations. Arrays: Definition, Single and Multidimensional Arrays, Representation of Arrays: Row Major Order, and Column Major Order, Derivation of Index Formulae for 1-D,2-D Array Application of arrays, Sparse Matrices and their representations. Linked lists: Array Implementation and Pointer Implementation of Singly Linked Lists, Doubly Linked List, Circularly Linked List, Operations on a Linked List. Insertion, Deletion, Traversal, Polynomial Representation and Addition Subtraction & Multiplications of Single variable.	08
	 Stacks: Abstract Data Type, Primitive Stack operations: Push & Pop, Array and Linked Implementation of Stack in C, Application of stack: Prefix and Postfix Expressions, Evaluation of postfix expression, Iteration and Recursion- Principles of recursion, Tail recursion, Removal of recursion Problem solving using iteration and recursion with examples such as binary search, Fibonacci numbers, and Hanoi towers. Queues: Operations on Queue: Create, Add, Delete, Full and Empty, Circular queues, Array and linked implementation of queues in C, Dequeue and Priority Queue. Searching: Concept of Searching, Sequential search, Index Sequential Search, Binary Search. Concept of Hashing & Collision resolution Techniques used in Hashing. 	08

ΠΙ	 Sorting: Insertion Sort, Selection Sort, Bubble Sort, Heap Sort, Comparison of Sorting Algorithms, Sorting in Linear Time: Counting Sort and Bucket Sort. Graphs: Terminology used with Graph, Data Structure for Graph Representations: Adjacency Matrices, Adjacency List, Adjacency. Graph Traversal: Depth First Search and Breadth First Search, Connected Component. 	08
IV	Trees: Basic terminology used with Tree, Binary Trees, Binary Tree	00
	Representation: Array Representation and Pointer (Linked List) Representation Binary Search Tree, Complete Binary Tree, A Extended	08
	Binary Trees, Tree Traversal algorithms: Inorder, Preorder and Postorder,	
	Constructing Binary Tree from given Tree Traversal, Operation of Insertion,	
	Deletion, Searching & Modification of data in Binary Search Tree.	
	Threaded Binary trees, Huffman coding using Binary Tree, AVL Tree and B	
V	Divide and Conquer with Examples Such as Merge Sort, Ouick Sort, Matrix	
	Multiplication: Strassen's Algorithm	08
	Dynamic Programming: Dijikstra Algorithm, Bellman Ford Algorithm, All-	
	pair Shortest Path: Warshal Algorithm, Longest Common Sub-sequence	
	Greedy Programming: Prims and Kruskal algorithm.	
Sugge	sted Keadings:	
1.	Cormen T. H., Leiserson C. E., Rivest R. L., and Stein C., "Introduction to Algo	rithms", PHI.
2.	Horowitz Ellis, Sahni Sartaj and Rajasekharan S., "Fundamentals of Computer A 2nd Edition, Universities Press.	Algorithms",
3.	Dave P. H., H.B.Dave, "Design and Analysis of Algorithms", 2nd Edition, Pears	son Education.
4.	Lipschuts S., "Theory and Problems of Data Structures", Schaum's Series.	
5.	Goyal K. K., Sharma Sandeep & Gupta Atul, "Data Structures and Analysis of A HP Hamilton.	Algorithms",
6.	Lipschutz, Data Structures With C - SIE - SOS, McGraw Hill	
7.	Samanta D., "Classic Data Structures", 2 nd Edition Prentice Hall India.	1.7.
8.	Goodrich M. T. and Tomassia R., "Algorithm Design: Foundations, Analysis and examples", John Wiley and sons.	d Internet
9.	Sridhar S., "Design and Analysis of Algorithms", Oxford Univ. Press.	
10). Aho, Ullman and Hopcroft, "Design and Analysis of algorithms", Pearson Education	ation.
	. R. Neapolitan and K. Naimipour, "Foundations of Algorithms",4th edition, Jone Student edition.	s an Bartlett
12	2. Reema Thareja, Data Structures using C, Oxford Univ. Press	

MCA206P : OBJECT ORIENTED PROGRAMMING LAB		
	Course Outcome (CO)	Bloom's Knowledge Level (KL)
	At the end of course , the student will be able to	
CO1	Use the Concept of Data Abstraction and Encapsulation in C++ programs.	K3
CO2	Design and Develop C++ program using the concept such as polymorphism, virtual function, exception handling and template.	K3
CO3	Apply object oriented techniques to analyze, design and develop a complete solution for a given problem.	K 3
 Use Java compiler and eclipse platform to write and execute Java program. Creating simple java programs, Understand OOP concepts and basics of Java programming. Create Java programs using inheritance and polymorphism. Implement error-handling techniques using exception handling and multithreading. Understand the use of java packages. File handling and establishment of database connection. Develop a calculator application in java. Develop a Client Server Application. Develop GUI applications using Swing components. 		

MCA207P : DATABASE MANAGEMENT SYSTEMS LAB		
	Course Outcome (CO)	Bloom's Knowledge Level (KL)
	At the end of course , the student will be able to	
CO1	Use the Concept of Data Abstraction and Encapsulation in C++ programs.	K ₆
CO2	Write SQL commands to query a database.	K 3
CO3	Write PL/SQL programs for implementing stored procedures, stored functions, cursors, trigger and packages.	K ₆
1. 1 2. (3. 7 3. 7 4. 1 5. (6. (7. (8. 1 9. 1 10. 1 11. 2	Installing oracle/ MYSQL. Creating Entity-Relationship Diagram using case tools. Writing SQL statements Using ORACLE /MYSQL: a. Writing basic SQL SELECT statements. b.Restricting and sorting data. c. Displaying data from multiple tables. d.Aggregating data using group function. e. Manipulating data. f. Creating and managing tables. Normalization. Creating procedure and functions. Creating procedure and functions. Creating packages and triggers. Design and implementation of payroll processing system. Design and implementation of Student Information System. Automatic Backup of Files and Recovery of Files.	

MCA208P:DATA STRUCTURES & ANALYSIS OF ALGORITHMS LAB		
	Course Outcome (CO)	Bloom's Knowledge Level (KL)
	At the end of course , the student will be able to	
CO1	Write and execute programs to implement various searching and sorting algorithms.	K3
CO2	Write and execute programs to implement various operations on two-dimensional arrays.	K3
CO3	Implement various operations of Stacks and Queues using both arrays and linked lists data structures.	K ₃
CO4	Implement graph algorithm to solve the problem of minimum spanning tree	K3
Program 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18.	 n in C or C++ for following: To implement addition and multiplication of two 2D arrays. To transpose a 2D array. To implement stack using array To implement queue using array. To implement circular queue using array. To implement stack using linked list. To implement dueue using linked list. To implement DFS using linked list. To implement Linear Search. To implement Bubble Sorting. To implement Insertion Sorting. To implement Merge Sorting. To implement Matrix Multiplication by strassen's algorithm 	