

(12) PATENT APPLICATION PUBLICATION

(21) Application No.202421070399 A

(19) INDIA

(22) Date of filing of Application :18/09/2024

(43) Publication Date : 25/10/2024

(54) Title of the invention : AI-DRIVEN METHOD FOR ACCELERATED DRUG DISCOVERY USING GENOMIC DATA

(51) International classification :G06N0003080000, G16B0015300000,
G16B0050000000, G16B0040000000,
G06N0003045000

(86) International Application No :NA
Filing Date :NA

(87) International Publication No : NA

(61) Patent of Addition to Application Number :NA
Filing Date :NA

(62) Divisional to Application Number :NA
Filing Date :NA

(71)Name of Applicant :

1)KALINGA UNIVERSITY RAIPUR

Address of Applicant :NAYA RAIPUR, CHHATTISGARH 492101, INDIA
Raipur -----

Name of Applicant : NA

Address of Applicant : NA

(72)Name of Inventor :

1)MS. LIPSA DASH

Address of Applicant :ASSISTANT PROFESSOR, DEPARTMENT OF
ZOOLOGY, KALINGA UNIVERSITY RAIPUR, NAYA RAIPUR,
CHHATTISGARH 492101, INDIA Raipur -----

2)MS. URVASHI SHARMA

Address of Applicant :ASSISTANT PROFESSOR, DEPARTMENT OF
ZOOLOGY, KALINGA UNIVERSITY RAIPUR, NAYA RAIPUR,
CHHATTISGARH 492101, INDIA Raipur -----

(57) Abstract :

Disclosed herein is an AI-driven method (100) for accelerated drug discovery using genomic data, comprising deploying a network of interconnected AI models to continuously analyze genomic data, drug-target interactions, and biomedical literature. The method (100) also involves utilizing natural language processing, deep learning, and graph neural networks to interpret diverse data sources and generate real-time insights into disease mechanisms and potential drug targets. The method (100) also involves integrating these insights with experimental data, clinical outcomes, and pharmacogenomic information to create a holistic drug discovery intelligence platform. The method (100) also involves employing a reinforcement learning algorithm to dynamically adjust drug discovery strategies based on real-time feedback and experimental results. The method (100) also involves creating adaptive, multi-modal drug screening protocols that self-optimize based on continuous performance analysis. The method (100) also involves implementing a federated learning system for secure, decentralized analysis of genomic data across multiple institutions. The method (100) also involves utilizing quantum computing algorithms for molecular dynamics simulations and binding affinity predictions to accelerate lead optimization.

No. of Pages : 28 No. of Claims : 10